摘要:示波器是什么?示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖象,便于人們研究各種電現象的變化過程。
示波器利用狹窄的、由高速電子組成的電子束,打在涂有熒光物質的屏面上,*可產生細小的光點。在被測信號的作用下,電子束*好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。
基本原理
顯示電路
顯示電路包括示波管及其控制電路兩個部分。示波管是一種特殊的電子管,是示波器一個重要組成部分。示波管由電子槍、偏轉系統和熒光屏3個部分組成。
電子槍用于產生并形成高速、聚束的電子流,去轟擊熒光屏使之發光。它主要由燈絲F、陰極K、控制極G、*陽極A1、第二陽極A2組成。除燈絲外,其余電極的結構都為金屬圓筒,且它們的軸心都保持在同一軸線上。陰極被加熱后,可沿軸向發射電子;控制極相對陰極來說是負電位,改變電位可以改變通過控制極小孔的電子數目,也*是控制熒光屏上光點的亮度。為了提高屏上光點亮度,又不降低對電子束偏轉的靈敏度,現代示波管中,在偏轉系統和熒光屏之間還加上一個后加速電極A3。
*陽極對陰極而言加有約幾百伏的正電壓。 在第二陽極上加有一個比*陽極更高的正電壓。穿過控制極小孔的電子束,在*陽極和第二陽極高電位的作用下,得到加速,向熒光屏方向作高速運動。由于電 荷的同性相斥,電子束會逐漸散開。通過*陽極、第二陽極之間電場的聚焦作用,使電子重新聚集起來并交匯于一點。適當控制*陽極和第二陽極之間電位差的大小,便能使焦點剛好落在熒光屏上,顯現一個光亮細小的圓點。改變*陽極和第二陽極之間的電位差,可起調節光點聚焦的作用,這*是示波器的“聚焦”和“輔助聚焦”調節的原理。第三陽極是示波管錐體內部涂上一層石墨形成的,通常加有很高的電壓,它有三個作用:①使穿過偏轉系統以后的電子進一步加速,使電子有足夠的能量去轟擊熒光屏,以獲得足夠的亮度;②石墨層涂在整個錐體上,能起到屏蔽作用;③電子束轟擊熒光屏會產生二次電子,處于高電位的A3可吸收這些電子。
(2)偏轉系統
示波管的偏轉系統大都是靜電偏轉式,它由兩對相互垂直的平行金屬板組成,分別稱為水平偏轉板和垂直偏轉板。分別控制電子束在水平方向和垂直方向的運動。當電子在偏 轉板之間運動時,如果偏轉板上沒有加電壓,偏轉板之間無電場,離開第二陽極后進入偏轉系統的電子將沿軸向運動,射向屏幕的中心。如果偏轉板上有電壓,偏轉 板之間則有電場,進入偏轉系統的電子會在偏轉電場的作用下射向熒光屏的指定位置。
如果兩塊偏轉板互相平行,并且它們的電位差等于零,那么通過偏轉板空間的,具有速度υ的電子束*會沿著原方向(設為 軸線方向)運動,并打在熒光屏的坐標原點上。如果兩塊偏轉板之間存在著恒定的電位差,則偏轉板間*形成一個電場,這個電場與電子的運動方向相垂直,于是電 子*朝著電位比較高的偏轉板偏轉。這樣,在兩偏轉板之間的空間,電子*沿著拋物線在這一點上做切線運動。*后,電子降落在熒光屏上的A點,這個A點距離熒 光屏原點(0)有一段距離,這段距離稱為偏轉量,用y表示。偏轉量y與偏轉板上所加的電壓Vy成正比。同理,在水平偏轉板上加有直流電壓時,也發生類似情況,只是光點在水平方向上偏轉。
(3)熒光屏
熒光屏位于示波管的終端,它的作用是將偏轉后的電子束顯示出來,以便觀察。在示波器的熒光屏內壁涂有一層發光物質, 因而,熒光屏上受到高速電子沖擊的地點*顯現出熒光。此時光點的亮度決定于電子束的數目、密度及其速度。改變控制極的電壓時,電子束中電子的數目將隨之改 變,光點亮度也*改變。在使用示波器時,不宜讓很亮的光點固定出現在示波管熒光屏一個位置上,否則該點熒光物質將因長期受電子沖擊而燒壞,從而失去發光能 力。
涂有不同熒光物質的熒光屏,在受電子沖擊時將顯示出不同的顏色和不同的余輝時間,通常供觀察一般信號波形用的是發綠光的,屬中余輝示波管,供觀察非周期性及低頻信號用的是發橙黃色光的,屬長余輝示波管;供照相用的示波器中,一般都采用發藍色的短余輝示波管。
垂直(Y軸)放大電路
由于示波管的偏轉靈敏度甚低,例如常用的示波管13SJ38J型,其垂直偏轉靈敏度為0.86mm/V(約12V電壓產生1cm的偏轉量),所以一般的被測信號電壓都要先經過垂直放大電路的放大,再加到示波管的垂直偏轉板上,以得到垂直方向的適當大小的圖形。
水平(X軸)放大電路
由于示波管水平方向的偏轉靈敏度也很低,所以接入示波管水平偏轉板的電壓(鋸齒波電壓或其它電壓)也要先經過水平放大電路的放大以后,再加到示波管的水平偏轉板上,以得到水平方向適當大小的圖形。
掃描與同步電路
掃描電路產生一個鋸齒波電壓。該鋸齒波電壓的頻率能在一定的范圍內連續可調。鋸齒波電壓的作用是使示波管陰極發出的電子束在熒光屏上形成周期性的、與時間成正比的水平位移,即形成時間基線。這樣,才能把加在垂直方向的被測信號按時間的變化波形展現在熒光屏上。
電源供給電路
電源供給電路:供給垂直與水平放大電路、掃描與同步電路以及示波管與控制電路所需的負高壓、燈絲電壓等。
由示波器的原理功能方框圖可見,被測信號電壓加到示波器的Y軸輸入端,經垂直放大電路加于示波管的垂直偏轉板。示波管的水平偏轉電壓,雖然多數情況都采用鋸齒電壓(用于觀察波形時),但有時也采用其它的外加電壓(用于測量頻率、相位差等時),因此在水平放大電路輸入端有一個水平信號選擇開關,以便按照需要選用示波器內部的鋸齒波電壓,或選用外加在X軸輸入端上的其它電壓來作為水平偏轉電壓。
此外,為了使熒光屏上顯示的圖形保持穩定,要求鋸齒波電壓信號的頻率和被測信號的頻率保持同步。這樣,不僅要求鋸齒 波電壓的頻率能連續調節,而且在產生鋸齒波的電路上還要輸入一個同步信號。這樣,對于只能產生連續掃描(即產生周而復始、連續不斷的鋸齒波)一種狀態的簡 易示波器(如國產SB10型等示波器)而言,需要在其掃描電路上輸入一個與被觀察信號頻率相關的同步信號,以牽制鋸齒波的振蕩頻率。對于具有等待掃描功能(即平時不產生鋸齒波,當被測信號來到時才產生一個鋸齒波,進行一次掃描)的示波器(如國產ST-16型示波器、SR-8型雙蹤示波器等) 為了適應各種需要,同步(或觸發)信號可通過同步或觸發信號選擇開關來選擇,通常來源有3個:①從垂直放大電路引來被測信號作為同步(或觸發)信號,此信 號稱為“內同步”(或“內觸發”)信號;②引入某種相關的外加信號為同步(或觸發)信號,此信號稱為“外同步”(或“外觸發”)信號,該信號加在外同步 (或外觸發)輸入端;③有些示波器的同步信號選擇開關還有一檔“電源同步”,是由220V,50Hz電源電壓,通過變壓器次級降壓后作為同步信號。
波形顯示的基本原理
由示波管的原理可知,一個直流電壓加到一對偏轉板上時,將使光點在熒光屏上產生一個固定位移,該位移的大小與所加直流電壓成正比。如果分別將兩個直流電壓同時加到垂直和水平兩對偏轉板上,則熒光屏上的光點位置*由兩個方向的位移所共同決定。
如果將一個正弦交流電壓加到一對偏轉板上時,光點在熒光屏上將隨電壓的變化而移動。當垂直偏轉板上加一個正弦交流電壓 時,在時間t=0的瞬間,電壓為Vo(零值),熒光屏上的光點位置在坐標原點0上,在時間t=1的瞬間,電壓為V1(正值),熒光屏上光點在坐標原點0點 上方的1上,位移的大小正比于電壓V1;在時間t=2的瞬間,電壓為V2(*大正值),熒光屏上的光點在坐標原點0點上方的2點上,位移的距離正比于電壓 V2;以此類推,在時間t=3,t=4,…,t=8的各個瞬間,熒光屏上光點位置分別為3、4、…、8點。在交流電壓的第二個周期、第三個周期……都將重復*個周期的情況。如果此時加在垂直偏轉板上的正弦交流電壓 之頻率很低,僅為lHz~2Hz,那么,在熒光屏上便會看見一個上下移動著的光點。這光點距離坐標原點的瞬時偏轉值將與加在垂直偏轉板上的電壓瞬時值成正 比。如果加在垂直偏轉板上的交流電壓頻率在10Hz~20Hz以上,則由于熒光屏的余輝現象和人眼的視覺暫留現象,在熒光屏上看到的*不是一個上下移動的 點,而是一根垂直的亮線了。該亮線的長短在示波器的垂直放大增益一定的情況下決定于正弦交流電壓峰一峰值的大小。如果在水平偏轉板上加一個正弦交流電壓, 則會產生相類似的情況,只是光點在水平軸上移動罷了。
如果將一隨時間線性變化的電壓(如鋸齒波電壓)加到一對偏轉板上,則光點在熒光屏上又會怎樣移動呢?當水平偏轉板上有鋸齒波電壓時,在時間t=0瞬間,電壓為Vo(*大負值),熒光屏上光點在坐標 原點左側的起始位置(零點上),位移的距離正比于電壓Vo;在時間t=1的瞬間,電壓為V1(負值),熒光屏上光點在坐標原點左方的1點上,位移的距離正 比于電壓V1;以此類推,在時間t=2,t=3,...,t=8的各個瞬間,熒光屏上光點的對應位置是2、3、…、8各點。在t=8這個瞬間,鋸齒波電壓 由*大正值V8躍變到*大負值Vo,則熒光屏上光點從8點極其迅速地向左移到起始位置零點。如果鋸齒波電壓是周期性的,則在鋸齒波電壓的第二個周期、第三 個周期、……都將重復*個周期的情形。如果此時加在水平偏轉板上的鋸齒波電壓頻率很低,僅為1Hz ~2Hz,在熒光屏上便會看見光點自左邊起始位置零點向右邊8點處勻速地移動,隨后光點又從右邊8點處極其迅速地移動到左邊起始位置零點。上述這個過程稱 為掃描。在水平軸加有周期性鋸齒波電壓時,掃描將周而復始地進行下去。光點距離起始位置零點的瞬時值,將與加在偏轉板上的電壓瞬時值成正比。如果加在偏轉 板上的鋸齒波電壓頻率在10Hz~20Hz以上,則由于熒光屏的余輝現象和人眼的視覺暫留現象,*看到一根水平亮線,該水平亮線的長度,在示波器水平放大 增益一定的情況下決定于鋸齒波電壓值,鋸齒波電壓值是與時間變化成正比的,而熒光屏上光點的位移又是與電壓值成正比的,因此熒光屏上的水平亮線可以代表時間軸。在此亮線上的任何相等的線段都代表相等的一段時間。
如果將被測信號電壓加到垂直偏轉板上,鋸齒波掃描電壓加到水平偏轉板上,而且被測信號電壓的頻率等于鋸齒波掃描電壓的頻率,則熒光屏上將顯示出一個周期的被測信號電壓隨時間變化的波形曲線(如 圖5-6所示)。由圖5-6所示可見,在時間t=0的瞬間,信號電壓為Vo(零值),鋸齒波電壓為V0′(負值),熒光屏上光點在坐標原點左面,位移的距 離正比于電壓V0′;在時間t=1的瞬間,交流電壓為V1(正值),鋸齒波電壓為V1′(負值),熒光屏上光點在坐標的第Ⅱ象限中。同理,在時間 t=2,t=3,…,t=8的瞬間,熒光屏上光點分別位于2,3,…,8點。在t=8瞬間,鋸齒波電壓由*大正值V8′跳變到*大負V0′,因而熒光屏上 的光點也從8點極其迅速地向左移到起始位置0點。以后,在被測周期信號的第二個周期、第三個周期……都重復*個周期的情形,光點在熒光屏上描出的軌跡也 都重疊在*次描出的軌跡上。所以,熒光屏上顯示出來的被測信號電壓是隨時間變化的穩定波形曲線。
由上述可見,為使熒光屏上的圖形穩定,被測信號電壓的頻率應與鋸齒波電壓的頻率保持整數比的關系, 即同步關系。為了實現這一點,*要求鋸齒波電壓的頻率連續可調,以便適應觀察各種不同頻率的周期信號。其次,由于被測信號頻率和鋸齒波振蕩信號頻率的相對 不穩定性,即使把鋸齒波電壓的頻率臨時調到與被測信號頻率成整倍數關系,也不能使圖形一直保持穩定。因此,示波器中都設有同步裝置。也*是在鋸齒波電路的 某部分加上一個同步信號來促使掃描的同步,對于只能產生連續掃描(即產生周而復始連續不斷的鋸齒波)一種狀態的簡易示波器(如國產SB-10型示波器等) 而言,需要在其掃描電路上輸入一個與被觀察信號頻率相關的同步信號,當所加同步信號的頻率接近鋸齒波頻率的自主振蕩頻率(或接近其整數倍)時,*可以把鋸 齒波頻率“拖入同步”或“鎖住”。對于具有等待掃描(即平時不產生鋸齒波,當被測信號來到時才產生一個鋸齒波進行一次掃描)功能的示波器(如國產ST- 16型示波器、SBT-5型同步示波器、SR-8型雙蹤示波器等等)而言,需要在其掃描電路上輸入一個與被測信號相關的觸發信號,使掃描過程與被測信號密 切配合。這樣,只要按照需要來選擇適當的同步信號或觸發信號,便可使任何欲研究的過程與鋸齒波掃描頻率保持同步。
雙線示波的顯示原理
在電子實踐技術過程中,常常需要同時觀察兩種(或兩種以上)信號隨時間變化的過程。并對這些不同信號進行電
量的測試和比較。為了達到這個目的,人們在應用普通示波器原理的基礎上,采用了以下兩種同時顯示多個波形的方法:一種是雙線(或多線)示波法;另一種是雙蹤(或多蹤)示波法。應用這兩種方法制造出來的示波器分別稱為雙線(或多線)示波器和雙蹤(或多蹤)示波器。
雙線(或多線)示波器是采用雙槍(或多槍)示波管來實現的。下面以雙槍示波管為例加以簡單說明。雙槍示波管有兩個互 相獨立的電子槍產生兩束電子。另有兩組互相獨立的偏轉系統,它們各自控制一束電子作上下、左右的運動。熒光屏是共用的,因而屏上可以同時顯示出兩種不同的 電信號波形,雙線示波也可以采用單槍雙線示波管來實現。這種示波管只有一個電子槍,在工作時是依靠特殊的電極把電子分成兩束。然后,由管內的兩組互相獨立的偏轉系統,分別控制兩束電子上下、左右運動。熒光屏是共用的,能同時顯示出兩種不同的電信號波形。由于雙線示波管的制造工藝要求高,成本也高,所以應用并不十分普遍。
雙蹤示波的顯示原理
雙 蹤(或多蹤)示波是在單線示波器的基礎上,增設一個專用電子開關,用它來實現兩種(或多種)波形的分別顯示。由于實現雙蹤(或多蹤)示波比實現雙線(或多 線)示波來得簡單,不需要使用結構復雜、價格昂貴的“雙腔”或“多腔”示波管,所以雙蹤(或多蹤)示波獲得了普遍的應用。
(1)雙蹤示波的顯示原理
電子開關K的作用是使加在示波管垂直偏轉板上的兩種信號電壓作周期性轉換。例如,在0~1這段時間里,電子開關K與信號通道A接通,這時在熒光屏上顯示出信號UA的 一段波形;在1~2這段時間里,電子開關K與信號通道B接通,這時在熒光屏上顯現出信號UB的一段波形;在2~3這段時間里,熒光屏上再一次顯示出信號 UA的一段波形;在3~4這段時間里,熒光屏上將再一次顯示出UB的一段波形……。這樣,兩個信號在熒光屏上雖然是交替顯示的,但由于人眼的視覺暫留現象 和熒光屏的余輝(高速電子在停止沖擊熒光屏后,熒光屏上受沖擊處仍保留一段發光時間)現象,*可在熒光屏上同時看到兩個被測信號波形。
圖5-8 雙蹤示波器基本原理
為了保持熒光屏顯示出來的兩種信號波形穩定,則要求被測信號頻率、掃描信號頻率與電子開關的轉換頻率三者之間必須滿足一定的關系。
首先,兩個被測信號頻率與掃描信號頻率之間應該是成整數比的關系,也*是要求“同步”。這一點與單線示波器的原理是相同的,只是現在的被測信號是兩個,而掃描電壓是一個。在實際應用中,需要觀察和比較的兩個信號常常是互相有內在聯系的,所以上述的同步要求一般是容易滿足的。
為了使熒光屏上顯示的兩個被測信號波形都穩定,除滿足上述要求外,還必須合理地選擇電子開關的轉換頻率,使得在示波器上所顯示的波形個數合適,以便于觀察。下面談談電子開關的工作方式問題,這個問題與電子開關的轉換頻率有關。
電子開關的工作方式有“交替”轉換和“斷續”轉換兩種。
圖5-9是電子開關“交替”轉換工作方式的波形示意圖。在0~1時間內,電子開關與通道A接通,加在X軸上的掃描信 號開始進行*個正程掃描,此時熒光屏上將顯現出信號UA的波形;在完成UA波形顯示后,掃描電壓迅速回掃;在1~2時間內,電子開關K與通道B接通,X 軸上的掃描信號開始進行第二個正程掃描,熒光屏上將顯示出信號UB的波形;在2~3時間內,熒光屏上再一次顯示出信號UA的波形;在3~4時間內,熒光屏 上再一次顯示出信號UB的波形……。由此可見,被測信號UA、UB的波形是依次、交替地出現在熒光屏上的,熒光屏上顯示的波形如圖5-9(b)所示。顯 然,此時電子開關的轉換與X軸的掃描始終保持著一致的步調,即電子開關的轉換頻率等于X軸掃描信號的頻率。圖5-9(b)中的虛線實際上是看不見的。
圖5-10 采用“斷續”轉換
圖5-9 采用“交替”轉換方式的波形示意圖方式的波形示意圖
采用交替轉換工作方式的顯示的波形與雙線示波法所顯示的波形非常相似,它們都沒有間斷點。但由于被測信號UA、UB的波形是依次交替地出現在熒光屏上的,所以,如果交替的間隙時間超過了人眼的視覺暫留時間和熒光屏的余輝時間,則人們所看到的熒光屏上的波形*會有閃爍現象。為了避免這種情況的出現,*要 求電子開關有足夠高的轉換頻率。這*是說當被測信號的頻率較低時,不宜采用交替轉換工作方式,而應采用斷續轉換工作方式。
當電子開關用斷續轉換工作方式時,在X軸掃描的每一個過程中,電子開關都以足夠高的轉換頻率,分別對所顯示的每個被 測信號進行多次取樣。這樣,即使被測信號頻率較低,也可避免出現波形的閃爍現象。同時,由于在一次掃描的過程中,光點在兩個圖形上交換的次數極多,所以圖 形上的細小斷裂痕跡不顯著,并不妨礙對波形細節的觀察。圖5-10是電于開關采用斷續轉換方式時的波形示意圖。實際上,由于開關的轉換頻率選得遠大于X軸 掃描頻率,所以熒光屏上顯示的圖形不會是圖5-10所示的斷續圖形,而是連續的圖形。圖中垂直方向的細虛線表示了電子開關的轉換過程。因在轉換過程中示波 器電路的設置使電子束截止,所以圖中所示的垂直細虛線實際上也是不可見的。
在了解上述用電子開關來實現雙蹤示波的原理后,*不難聯想到用環形計數器來實現多蹤示波的原理。由于兩者的顯示原理相似,這里*不再贅述。
(2)雙蹤示波器的基本組成
圖5-11是雙蹤示波器的原理功能方框圖。由圖可見,它主要是由兩個通道的Y軸前置放大電路、門控電路、電子開關、混合電路、延遲電路、Y軸后置放大電路、觸發電路、掃描電路、X軸放大電路、Z軸放大電路、校準信號電路、示波管和高低壓電源供給電路等組成。
觀察信號波形時,被測信號uA,uB通過YA,YB兩個輸入端輸入示波器,先分別送到Y軸前置放大電路YA和YB進行放大。因通道YA和通道YB都受電子開關的控制,所以uA,uB兩信號輪換著輸送到后面的混合電路,加到示波管的垂直偏轉板上。
為了適應各種不同的測試需要,電子開關可有五種不同的工作狀態,即交替、YA、YB、YA+YB、斷續等。這5種工作狀態由顯示方式開關來控制。
當顯示方式開關置于交替位置時,電子開關為一雙穩態電路。它受由掃描電路來的閘門信號控制,使得Y軸兩個前置通道隨著掃描電路門信號的變化而交替地工作。每秒鐘交替轉換次數與由掃描電路產生的掃描信號的重復頻率有關。交替工作狀態適用于觀察頻率不太低的被測信號。
圖5-11 雙蹤示波器的原理功能方框圖
當顯示方式開關置于YA或YB位置時,電子開關為一單穩態電路。前置放大電路YA或YB可單獨工作,此時,雙蹤示波器可作為普通單線示波器使用。
當顯示方式開關置于YA+YB位置時,電子開關處于不工作狀態。此時,YA、YB兩通道同時工作,因而可得到兩信號 相加或兩信號相減的顯示。然而,兩信號究竟是相加還是相減,這要通過YA通道的極性作用開關來選擇。這個開關有兩個位置,在*個位置時,熒光屏上的圖形 為兩信號之和;在第二個位置(-YA)時,熒光屏上的圖形為兩信號之差。
為了觀察被測信號隨時間變化的波形,示波管的水平偏轉板上必須加以線性掃描電壓(鋸齒波電壓)。這個掃描電壓是由掃描電路產生的。當觸發信號加到觸發電路時,觸發了掃描電路,掃描電路*產生相應的掃描信號;當不加觸發信號時,掃描電路*不產生掃描信號。
觸發有內觸發、外觸發兩種,由觸發選擇開關來選擇。當該開關置于內的位置時,觸發信號來自經Y軸通道送入的被測信號。當該開關置于外的位置時,觸發信號是由外部送入的。這個信號應與被測信號的頻率成整數比的關系。示波器在使用中,多數采用內觸發工作方式。
所謂內觸發也分為兩種情況,并由內觸發選擇開關控制。當開關置于常態的位置時,觸發電路的觸發信號來自YA,YB通 道。此時,兩個通道即可同時穩定地顯示出各自的被測信號。當用雙蹤顯示來作時間比較分析時,*應該將內觸發選擇開關置于YB的位置。在這個位置時,觸發電 路的觸發信號只取自YB通道的輸入信號。此時只有當uA,uB的頻率成整數比時,熒光屏上才能同時穩定地顯示兩個波形。
掃描電路產生的掃描信號(鋸齒波信號),通過X軸選擇開關接到X軸放大電路,經放大后送到示波管的X軸偏轉板。這*是通常在觀察信號隨時間變化的波形時,開關選掃描檔的情況。除上述情況外,用示波器進行其它測試(比如觀察李沙育圖形)時,開關置X外接檔,此時可將X軸輸入端輸入的信號,加到X軸放大電路進行放大,隨后再送至X軸偏轉板。
Z軸放大電路對熒光屏上光點輝度起著調節的作用,抹去不必要顯示的光點軌跡。當掃描電路閘門信號來到Z軸放大電路,Z軸放大電路便輸出正向的增輝脈沖信號, 加至示波管的控制極。這*是說,在掃描信號的過程中,熒光屏上的光點得以增輝;在電子開關的轉換過程中,電子開關電路將輸出脈沖信號也加至Z軸放大電路, 此時Z軸放大電路便輸出負向脈沖信號,加至示波管的控制極。這樣,*消去了兩個通道交替工作時的過渡光點,以提高顯示波形的清晰度。
校正信號電路產生一個一定頻率、一定幅度的矩形信號(如國產SR-8型兩蹤示波器的校正信號是頻率為lkHz、幅度為1V)。它是作校正Y軸放大電路的靈敏度和X軸的掃描速度之用的。
高、低壓電源供給電路中的低壓是供給示波器各級所需的低壓電源的,高壓是供給示波管顯示系統電源的。
儀器分類
示波器可以分為模擬示波器和數字示波器,對于大多數的電子應用,無論模擬示波器和數字示波器都是可以勝任的,只是對于一些特定的應用,由于模擬示波器和數字示波器所具備的不同特性,才會出現適合和不適合的地方。
模擬示波器
模擬示波器的工作方式是直接測量信號電壓,并且通過從左到右穿過示波器屏幕的電子束在垂直方向描繪電壓。
數字示波器
數字示波器的工作方式是通過模擬轉換器(ADC)把被測電壓轉換為數字信息。數字示波器捕獲的是波形的一系列樣值,并對樣值進行存儲,存儲限度是判斷累計的樣值是否能描繪出波形為止,隨后,數字示波器重構波形。
數字示波器可以分為數字存儲示波器(DSO),數字熒光示波器(DPO)和采樣示波器。
模擬示波器要提高帶寬,需要示波管、垂直放大和水平掃描全面推進。數字示波器要改善帶寬只需要提高前端的A/D轉換 器的性能,對示波管和掃描電路沒有特殊要求。加上數字示波管能充分利用記憶、存儲和處理,以及多種觸發和超前觸發能力。廿世紀八十年代數字示波器異*突 起,成果累累,大有全面取代模擬示波器之勢,模擬示波器的確從前臺退到后臺。
參數特征
通道數分類
通常無論是模擬示波器還是數字示波器,可以根據其通道數分為: 單通道/單蹤示波器; 雙通道/雙蹤示波器.
帶寬分類
帶寬是根據示波器測試要求來定,5M/10M/20M/40M/60M/100M/1G......等分類選型.
使用方法
示波器雖然分成好幾類,各類又有許多種型號,但是一般的示波器除頻帶寬度、輸入靈敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型雙蹤示波器為例介紹。
(一)面板裝置
SR-8型雙蹤示波器的面板圖如圖5-12所示。其面板裝置按其位置和功能通常可劃分為3大部分:顯示、垂直(Y軸)、水平(X軸)。現分別介紹這3個部分控制裝置的作用。
1.顯示部分主要控制件為:
(1)電源開關。
(2)電源指示燈。
(3)輝度 調整光點亮度。
(4)聚焦調整光點或波形清晰度。
(5)輔助聚焦 配合“聚焦”旋鈕調節清晰度。
(6)標尺亮度調節坐標片上刻度線亮度。
(7)尋跡 當按鍵向下按時,使偏離熒光屏的光點回到顯示區域,而尋到光點位置。
(8)標準信號輸出1kHz、1V方波校準信號由此引出。加到Y軸輸入端,用以校準Y軸輸入靈敏度和X軸掃描速度。
2.Y軸插件部分
(1)顯示方式選擇開關用以轉換兩個Y軸前置放大器YA與YB 工作狀態的控制件,具有五種不同作用的顯示方式:
“交替”:當顯示方式開關置于“交替”時,電子開關受掃描信號控制轉換,每次掃描都輪流接通YA或YB 信號。當被測信號的頻率越高,掃描信號頻率也越高。電
子開關轉換速率也越快,不會有閃爍現象。這種工作狀態適用于觀察兩個工作頻率較高的信號。
“斷續”:當顯示方式開關置于“斷續”時,電子開關不受掃描信號控制,產生頻率固定為200kHz方波信號,使電子 開關快速交替接通YA和YB。由于開關動作頻率高于被測信號頻率,因此屏幕上顯示的兩個通道信號波形是斷續的。當被測信號頻率較高時,斷續現象十分明顯, 甚至無法觀測;當被測信號頻率較低時,斷續現象被掩蓋。因此,這種工作狀態適合于觀察兩個工作頻率較低的信號。
“YA”、“YB ”:顯示方式開關置于“YA ”或者“YB ”時,表示示波器處于單通道工作,此時示波器的工作方式相當于單蹤示波器,即只能單獨顯示“YA”或“YB ”通道的信號波形。
“YA + YB”:顯示方式開關置于“YA + YB ”時,電子開關不工作,YA與YB 兩路信號均通過放大器和門電路,示波器將顯示出兩路信號疊加的波形。
(2)“DC-⊥-AC”Y軸輸入選擇開關,用以選擇被測信號接至輸入端的耦合方式。置于“DC”是直接耦合,能輸入含有直流分量的交流信號;置于“AC”位置,實現交流耦合,只能輸入交流分量;置于“⊥”位置時,Y軸輸入端接地,這時顯示的時基線一般用來作為測試直流電壓零電平的參考基準線。
(3)“微調V/div”靈敏度選擇開關及微調裝置。靈敏度選擇開關系套軸結構,黑色旋鈕是Y軸靈敏度粗調裝置,自 10mv/div~20v/div分11檔。紅色旋鈕為細調裝置,順時針方向增加到滿度時為校準位置,可按粗調旋鈕所指示的數值,讀取被測信號的幅度。當 此旋鈕反時針轉到滿度時,其變化范圍應大于2.5倍,連續調節“微調”電位器,可實現各檔級之間的靈敏度覆蓋,在作定量測量時,此旋鈕應置于順時針滿度的 “校準”位置。
(4)“平衡” 當Y軸放大器輸入電路出現不平衡時,顯示的光點或波形*會隨“V/div”開關的“微調”旋轉而出現Y軸方向的位移,調節“平衡”電位器能將這種位移減至*小。
(5)“↑↓” Y軸位移電位器,用以調節波形的垂直位置。
(6)“極性、拉YA ”YA 通道的極性轉換按拉式開關。拉出時YA 通道信號倒相顯示,即顯示方式(YA+ YB )時,顯示圖像為YB - YA 。
(7)“內觸發、拉YB ”觸發源選擇開關。在按的位置上(常態) 掃描觸發信號分別取自YA 及YB 通道的輸入信號,適應于單蹤或雙蹤顯示,但不能夠對雙蹤波形作時間比較。當把開關拉出時,掃描的觸發信號只取自于YB 通道的輸入信號,因而它適合于雙蹤顯示時對比兩個波形的時間和相位差。
(8)Y軸輸入插座采用BNC型插座,被測信號由此直接或經探頭輸入。
3.X軸插件部分
(1)“t/div” 掃描速度選擇開關及微調旋鈕。X軸的光點移動速度由其決定,從0.2μs~1s共分21檔級。當該開關“微調”電位器順時針方向旋轉到底并接上開關后,即為“校準”位置,此時“t/div”的指示值,即為掃描速度的實際值。
(2)“擴展、拉×10”掃描速度擴展裝置。是按拉式開關,在按的狀態作正常使用,拉的位置掃描速度增加10倍。“t/div”的指示值,也應相應計取。采用“擴展 拉×10”適于觀察波形細節。
(3)“→←” X軸位置調節旋鈕。系X軸光跡的水平位置調節電位器,是套軸結構。外圈旋鈕為粗調裝置,順時針方向旋轉基線右移,反時針方向旋轉則基線左移。置于套軸上的小旋鈕為細調裝置,適用于經擴展后信號的調節。
(4)“外觸發、X外接”插座采用BNC型插座。在使用外觸發時,作為連接外觸發信號的插座。也可以作為X軸放大器外接時信號輸入插座。其輸入阻抗約為1MΩ。外接使用時,輸入信號的峰值應小于12V。
(5)“觸發電平”旋鈕 觸發電平調節電位器旋鈕。用于選擇輸入信號波形的觸發點。具體地說,*是調節開始掃描的時間,決定掃描在觸發信號波形的哪一點上被觸發。順時針方向旋動時,觸發點趨向信號波形的正向部分,逆時針方向旋動時,觸發點趨向信號波形的負向部分。
(6)“穩定性”觸發穩定性微調旋鈕。用以改變掃描電路的工作狀態,一般應處于待觸發狀態。調整方法是將Y軸輸入耦 合方式選擇(AC-地-DC)開關置于地檔,將V/div開關置于*高靈敏度的檔級,在電平旋鈕調離自激狀態的情況下,用小螺絲刀將穩定度電位器順時針方 向旋到底,則掃描電路產生自激掃描,此時屏幕上出現掃描線;然后逆時針方向慢慢旋動,使掃描線剛消失。此時掃描電路即處于待觸發狀態。在這種狀態下,用示 波器進行測量時,只要調節電平旋鈕,即能在屏幕上獲得穩定的波形,并能隨意調節選擇屏幕上波形的起始點位置。少數示波器,當穩定度電位器逆時針方向旋到底 時,屏幕上出現掃描線;然后順時針方向慢慢旋動,使屏幕上掃描線剛消失,此時掃描電路即處于待觸發狀態。
(7)“內、外” 觸發源選擇開關。置于“內”位置時,掃描觸發信號取自Y軸通道的被測信號;置于“外”位置時,觸發信號取自“外觸發X 外接”輸入端引入的外觸發信號。
(8)“AC”“AC(H)”“DC”觸發耦合方式開關。 “DC”檔,是直流藕合狀態,適合于變化緩慢或頻率甚低(如低于100Hz)的觸發信號。“AC”檔,是交流藕合狀態,由于隔斷了觸發中的直流分量,因此 觸發性能不受直流分量影響。“AC(H)”檔,是低頻抑制的交流耦合狀態,在觀察包含低頻分量的高頻復合波時,觸發信號通過高通濾波器進行耦合,抑制了低頻噪聲和低頻觸發信號(2MHz以下的低頻分量),免除因誤觸發而造成的波形幌動。
(9)“高頻、常態、自動”觸發方式開關。用以選擇不同的觸發方式,以適應不同的被測信號與測試目的。“高頻”檔,頻率甚高時(如高于5MHz),且無足夠的幅度使觸發穩定時,選該檔。此時掃描處于高頻觸發狀態,由示波器自身產生的高頻信號(200kHz 信號),對被測信號進行同步。不必經常調整電平旋鈕,屏幕上即能顯示穩定的波形,操作方便,有利于觀察高頻信號波形。“常態”檔,采用來自Y軸或外接觸發 源的輸入信號進行觸發掃描,是常用的觸發掃描方式。“自動”擋,掃描處于自動狀態(與高頻觸發方式相仿),但不必調整電平旋鈕,也能觀察到穩定的波形,操 作方便,有利于觀察較低頻率的信號。
(10)“+、-”觸發極性開關。在“+”位置時選用觸發信號的上升部分,在“-”位置時選用觸發信號的下降部分對掃描電路進行觸發。
(二)使用前的檢查
示波器初次使用前或久藏復用時,有必要進行一次能否工作的簡單檢查和進行掃描電路穩定度、垂直放大電路直流平衡的調 整。示波器在進行電壓和時間的定量測試時,還必須進行垂直放大電路增益和水平掃描速度的校準。示波器能否正常工作的檢查方法、垂直放大電路增益和水平掃描 速度的校準方法,由于各種型號示波器的校準信號的幅度、頻率等參數不一樣,因而檢查、校準方法略有差異。
(三)使用步驟
用示波器能觀察各種不同電信號幅度隨時間變化的波形曲線,在這個基礎上示波器可以應用于測量電壓、時間、頻率、相位差和調幅度等電參數。下面介紹用示波器觀察電信號波形的使用步驟。
1.選擇Y軸耦合方式
根據被測信號頻率的高低,將Y軸輸入耦合方式選擇“AC-地-DC”開關置于AC或DC。
2.選擇Y軸靈敏度
根據被測信號的大約峰-峰值(如果采用衰減探頭,應除以衰減倍數;在耦合方式取DC檔時,還要考慮疊加的直流電壓 值),將Y軸靈敏度選擇V/div開關(或Y軸衰減開關)置于適當檔級。實際使用中如不需讀測電壓值,則可適當調節Y軸靈敏度微調(或Y軸增益)旋鈕,使 屏幕上顯現所需要高度的波形。
3.選擇觸發(或同步)信號來源與極性
通常將觸發(或同步)信號極性開關置于“+”或“-”檔。
4.選擇掃描速度
根據被測信號周期(或頻率)的大約值,將X軸掃描速度t/div(或掃描范圍)開關置于適當檔級。實際使用中如不需 讀測時間值,則可適當調節掃速t/div微調(或掃描微調)旋鈕,使屏幕上顯示測試所需周期數的波形。如果需要觀察的是信號的邊沿部分,則掃速t/div 開關應置于*快掃速檔。
5.輸入被測信號
被測信號由探頭衰減后(或由同軸電纜不衰減直接輸入,但此時的輸入阻抗降低、輸入電容增大),通過Y軸輸入端輸入示波器。
常見現象
沒有光點或波形
電源未接通。
輝度旋鈕未調節好。
X,Y軸移位旋鈕位置調偏。
Y軸平衡電位器調整不當,造成直流放大電路嚴重失衡。
水平方向展不開
觸發源選擇開關置于外檔,且無外觸發信號輸入,則無鋸齒波產生。
電平旋鈕調節不當。
穩定度電位器沒有調整在使掃描電路處于待觸發的臨界狀態。
X軸選擇誤置于X外接位置,且外接插座上又無信號輸入。
兩蹤示波器如果只使用A通道(B通道無輸入信號),而內觸發開關置于拉YB位置,則無鋸齒波產生。
垂直方向無展示
輸入耦合方式DC-接地-AC開關誤置于接地位置。
輸入端的高、低電位端與被測電路的高、低電位端接反。
輸入信號較小,而V/div誤置于低靈敏度檔。
波形不穩定
穩定度電位器順時針旋轉過度,致使掃描電路處于自激掃描狀態(未處于待觸發的臨界狀態)。
觸發耦合方式AC、AC(H)、DC開關未能按照不同觸發信號頻率正確選擇相應檔級。
選擇高頻觸發狀態時,觸發源選擇開關誤置于外檔(應置于內檔。)
部分示波器掃描處于自動檔(連續掃描)時,波形不穩定。
垂直線條密集或呈現一矩形
t/div開關選擇不當,致使f掃描<
水平線條密集或呈一條傾斜水平線
t/div關選擇不當,致使f掃描>>f信號。
垂直方向的電壓讀數不準
未進行垂直方向的偏轉靈敏度(v/div)校準。
進行v/div校準時,v/div微調旋鈕未置于校正位置(即順時針方向未旋足)。
進行測試時,v/div微調旋鈕調離了校正位置(即調離了順時針方向旋足的位置)。
使用l0 :1衰減探頭,計算電壓時未乘以10倍。
被測信號頻率超過示波器的*高使用頻率,示波器讀數比實際值偏小。
測得的是峰-峰值,正弦有效值需換算求得。
水平方向的讀數不準
未進行水平方向的偏轉靈敏度(t/div)校準。
進行t/div校準時,t/div微調旋鈕未置于校準位置(即順時針方向未旋足)。
進行測試時,t/div微調旋鈕調離了校正位置(即調離了順時針方向旋足的位置)。
掃速擴展開關置于拉(×10)位置時,測試未按t/div開關指示值提高靈敏度10倍計算。
交直流疊加信號的直流電壓值分辨不清
Y軸輸入耦合選擇DC-接地-AC開關誤置于AC檔(應置于DC檔)。
測試前未將DC-接地-AC開關置于接地檔進行直流電平參考點校正。
Y軸平衡電位器未調整好。
測不出兩個信號間的相位差
測不出兩個信號間的相位差(波形顯示法)
雙蹤示波器誤把內觸發(拉YB)開關置于按(常態)位置應把該開關置于拉YB位置。
雙蹤示波器沒有正確選擇顯示方式開關的交替和斷續檔。
單線示波器觸發選擇開關誤置于內檔。
單線示波器觸發選擇開關雖置于外檔,但兩次外觸發未采用同一信號。
十一、調幅波形失常
t/div開關選擇不當,掃描頻率誤按調幅波載波頻率選擇(應按音頻調幅信號頻率選擇)。
十二、波形調不到要求的起始時間和部位
穩定度電位器未調整在待觸發的臨界觸發點上。
觸發極性(+、-)與觸發電平(+、-)配合不當。
觸發方式開關誤置于自動檔(應置于常態檔)。
十三、觸發或同步掃描
緩緩調節觸發電平(或同步)旋鈕,屏幕上顯現穩定的波形,根據觀察需要,適當調節電平旋鈕,以顯示相應起始位置的波形。
如果用雙蹤示波器觀察波形,作單蹤顯示時,顯示方式開關置于YA或YB。被測信號通過YA或YB輸入端輸入示波器。 Y軸的觸發源選擇“內觸發一拉YB”開關置于按(常態)位置。若示波器作兩蹤顯示時,顯示方式開關置于交替檔(適用于觀察頻率不太低的信號),或斷續檔 (適用于觀察頻率不太高的信號),此時Y軸的觸發源選擇“內觸發-拉YB”開關置“拉YB”檔。
十四、使用不當造成的異常現象
示波器在使用過程中,往往由于操作者對于示波原理不甚理解和對示波器面板控制裝置的作用不熟悉,會出現由于調節不當而造成異常現象。現把示波器使用過程中,常見的由于使用不當而造成的異常現象及其原因羅列于表5-1中,供示波器使用者參考。
測試應用
電壓的測量
利用示波器所做的任何測量,都是歸結為對電壓的測量。示波器可以測量各種波形的電壓幅度,既可以測量直流電壓和正弦電壓,又可以測量脈沖或非正弦電壓的幅度。更有用的是它可以測量一個脈沖電壓波形各部分的電壓幅值,如上沖量或頂部下降量等。這是其他任何電壓測量儀器都不能比擬的。
1.直接測量法
所謂直接測量法,*是直接從屏幕上量出被測電壓波形的高度,然后換算成電壓值。定量測試電壓時,一般把Y軸靈敏度開關的微調旋鈕轉至“校準”位置上,這樣,*可以從“V/div”的指示值和被測信號占取的縱軸坐標值直接計算被測電壓值。所以,直接測量法又稱為標尺法。
(1)交流電壓的測量
將Y軸輸入耦合開關置于“AC”位置,顯示出輸入波形的交流成分。如交流信號的頻率很低時,則應將Y軸輸入耦合開關置于“DC”位置。
將被測波形移至示波管屏幕的中心位置,用“V/div”開關將被測波形控制在屏幕有效工作面積的范圍內,按坐標刻度 片的分度讀取整個波形所占Y軸方向的度數H,則被測電壓的峰-峰值VP-P可等于“V/div”開關指示值與H的乘積。如果使用探頭測量時,應把探頭的衰 減量計算在內,即把上述計算數值乘10。
例如示波器的Y軸靈敏度開關“V/div”位于0.2檔級,被測波形占Y軸的坐標幅度H為5div,則此信號電壓的峰-峰值為1V。如是經探頭測量,仍指示上述數值,則被測信號電壓的峰-峰值*為10V。
(2)直流電壓的測量
將Y軸輸入耦合開關置于“地”位置,觸發方式開關置“自動”位置,使屏幕顯示一水平掃描線,此掃描線便為零電平線。
將Y軸輸入耦合開關置“DC”位置,加入被測電壓,此時,掃描線在Y軸方向產生跳變位移H,被測電壓即為“V/div”開關指示值與H的乘積。
直接測量法簡單易行,但誤差較大。產生誤差的因素有讀數誤差、視差和示波器的系統誤差(衰減器、偏轉系統、示波管邊緣效應)等。
2.比較測量法
比較測量法*是用一已知的標準電壓波形與被測電壓波形進行比較求得被測電壓值。
將被測電壓Vx輸入示波器的Y軸通道,調節Y軸靈敏度選擇開關“V/div”及其微調旋鈕,使熒光屏顯示出便于測量 的高度Hx并做好記錄,且“V/div”開關及微調旋鈕位置保持不變。去掉被測電壓,把一個已知的可調標準電壓Vs輸入Y軸,調節標準電壓的輸出幅度,使 它顯示與被測電壓相同的幅度。此時,標準電壓的輸出幅度等于被測電壓的幅度。比較法測量電壓可避免垂直系統引起和誤差,因而提高了測量精度。
時間的測量
示波器時基能產生與時間呈線性關系的掃描線,因而可以用熒光屏的水平刻度來測量波形的時間參數,如周期性信號的重復周期、脈沖信號的寬度、時間間隔、上升時間(前沿)和下降時間(后沿)、兩個信號的時間差等等。
將示波器的掃速開關“t/div”的“微調”裝置轉至校準位置時,顯示的波形在水平方向刻度所代表的時間可按“t/div”開關的指示值直讀計算,從而較準確地求出被測信號的時間參數。
相位的測量
利用示波器測量兩個正弦電壓之間的相位差具有實用意義,用計數器可以測量頻率和時間,但不能直接測量正弦電壓之間的相位關系。利用示波器測量相位的方法很多,下面,僅介紹幾種常用的簡單方法。
1.雙蹤法
雙蹤法是用雙蹤示波器在熒光屏上直接比較兩個被測電壓的波形來測量其相位關系。測量時,將相位超前的信號接入YB通道,另一個信號接入YA通道。選用YB觸發。調節 “t/div”開關,使被測波形的一個周期在水平標尺上準確地占滿8div,這樣,一個周期的相角360°被8等分,每1div相當于45°。讀出超前波 與滯后波在水平軸的差距T,按下式計算相位差φ:
φ=45°/div×T(div)
如T==1.5div ,則φ=45°/div×1.5div=67.5°
2.李薩如圖形法測相位
將示波器的X軸選擇置于X軸輸入位置,將信號u1接入示波器的Y軸輸入端,信號u2接入示波器的X軸輸入端。適當調節示波器面板上相關旋鈕,使熒光屏上顯現一個大小適宜的橢圓(在特殊情況下,可能是一個正圓或一根斜線)。
形成橢圓的原理如圖5-13所示。
由圖可見,設Y軸偏轉板上的信號u1導前于X軸偏轉板上的信號u21/8周期,設u2的初相為零,即φ2=0,因此 當u2為零時,u1為一個較大的值。如圖中的“0”點。此時,熒光屏上的光點也相應地位于“0”點。隨著時間的變化,u1上升,u2也上升,則熒光屏上的 光點向右上方移動。當經1/8周期后,u1、u2分別到達“1”點,此時u1到達*大值,u2為一個較大的值,熒光屏上的光點位于相應的“1”。如此繼續 下去,熒光屏上的光點將描出一個順時針旋轉的橢圓。如果u1滯后于u2則形成一個逆時針旋轉的橢圓。當然,這只有在信號頻率很低時(如幾赫茲),且在短余輝的熒光屏上便會清楚地看到熒光屏上的光點順時針或逆時針旋轉的現象。由上述可見橢圓的形狀是隨兩個正弦信號電壓u1、u2相位差的不同而不同。因此可以根據橢圓的形狀確定兩個正弦信號之間的相位差Δφ。在圖5-13中設A是橢圓與Y軸交點的縱坐標,B是橢圓上各點坐標的*大值。由圖可見,A是對應于t=0時u1的瞬時電壓,即
A=Um1sinφ1
B是對應于u1的幅值,即
B=Um1
于是A/B=(Um1sinφ1)/ Um1= sinφ1
來表示。在實際測試中為讀數方便,常讀取2A,2B(或2C,2D),按式
Δφ=arc sin(2A/2B)或Δφ=arc sin(2C/2D)
來計算相位差。
圖5-14所示的各種圖形分別表示正弦信號電壓在不同相位差時的情況。不難看出,如果橢圓的主軸在*和第3象限內,則相位差在0°~90°或270°~360°之間;如果主軸在第2和第4象限內,相位差在90°~180°或180°~270°之間。
圖5-14 不同相位差時的圖形
頻率的測量
用示波器測量信號頻率的方法很多,下面介紹常用的兩種基本方法。
1.周期法
對于任何周期信號,可用前述的時間間隔的測量方法,先測定其每個周期的時間T,再用下式求出頻率f :f=1/T
例如示波器上顯示的被測波形,一周期為8div,“t/div”開關置“1μs”位置,其“微調”置“校準”位置。則其周期和頻率計算如下:
T=1us/div×8div = 8us
f= 1/8us =125kHz
所以,被測波形的頻率為125kHz。
2.李薩如圖形法測頻率
將示波器置X-Y工作方式,被測信號輸入Y軸,標準頻率信號輸入“X外接”,慢慢改變標準頻率,使這兩個信號頻率成整數倍時,例如fx :
fy=1:2,則在熒光屏上會形成穩定的李沙育圖形。
李薩如圖的形狀不但與兩個偏轉電壓的相位有關,而且與兩個偏轉電壓的頻率也有關。用描跡法可以畫出ux與uy的各種頻率比、不同相位差時的李沙育圖形,幾種不同頻率比的李薩如圖形如圖5-15所示。
利用李薩如圖形與頻率的關系,可進行準確的頻率比較來測定被測信號的頻率。其方法是分別通過李薩如圖形引水平線和垂直線,所引的水平線垂直線不要通過圖形的交叉點或與其相切。若水平線與圖形的交點數為m,垂直線與圖形的交點數n,則
fy / fx=m / n
當標準頻率fx(或fy)為已知時,由上式可以求出被測信號頻率fy(或fx)。顯然,在實際測試工作中,用李沙育圖形進行頻率測試時,為了使測試簡便正確,在條件許可的情況下,通常盡可能調節已知頻率信號的頻率,使熒光屏上顯示的圖形為圓或橢圓。這時被測信號頻率等于已知信號頻率。
由于加到示波器上的兩個電壓相位不同,熒光屏上圖形會有不同的形狀,但這對確定未知頻率并無影響。
李薩如圖法測量頻率是相當準確的,但操作較費時。同時,它只適用于測量頻率較低的信號。
知名廠商
美國泰克Tektronix
泰克科技有限公司是一家全球*的測試、測量和監測解決方案提供商。主要提供包括示波器、邏輯分析儀、信號源和頻譜分析儀在內的以及各種視頻測試、測量和監測產品。特別在示 波器市場,泰克科技有限公司是全球銷量*大的公司,也是全球80%測試工程師的*品牌。泰克科技有限公司為固定網絡和移動網絡提供網絡診斷設備、網絡管 理解決方案和相關支持服務,在其它參與競爭的產品市場中泰克也處于數一數二的地位。并且泰克科技有限公司一直與國內知名大學合作,如清華大學、復旦大學、上海交通大學和華中科技大學,為教育項目投資,建立研發機構,為教學提供先進的測試測量設備;這些投資幫助高等院校的在校學生接觸先進的技術,了解測試測量行業的*新發展。泰克還贊助了大量的校園項目,鼓勵學生參與*科研項目,幫助他們更好地為將來的電子工程師職業生涯打好基礎,做好準備。
美國安捷倫Agilent
安 捷倫科技公司是由美國惠普公司戰略重組分立而成的一家高科技跨國公司,是全球*的測量公司。安捷倫科技憑借其中心實驗室的強大科研力量,專注于通信系 統、自動化系統、測試和測量、半導體產品及生命科學和化學分析等前沿高科技領域的業務。其超凡的測量技術被廣泛應用于感應、分析、顯示及數據通信產品的研 究開發。
臺灣固緯INSTEK
固 緯電子實業股份有限公司,創立於1975年,主要生產電子測試儀器,是臺灣創立*早且*具規模之電子測試儀器大廠。固緯創業團隊開創以電源供應器起 家,以量測技術為核心,專注精密電子量測儀器研發,并開創國人自制電子測試儀器的先河,開發出國內*臺液晶數位式示波器,也是臺灣*有能力產制數位示 波器及頻譜分析儀的廠商!
美國力科LeCroy
力科是提供測試設備解決方案的領導廠商,為使得全球各行各業中的公司提供能夠設計和測試各類電子器件。我們成立于1964年,自公司成立以來,我們一直把重點放在研制改善生產效率的測試設備上,幫助工程師更快速、更高效地解決電路問題。
美國FLUKE
美 國福祿克公司(Fluke Corporation)是美國丹納赫集團(Danaher Corporation)旗下的公司。丹納赫集團是一個擁有 40億美元年銷售額的美國上市公司,位列美國財富雜志全球 500強之一。自 1948年成立以來,福祿克公司為各種工業的生產和維修領域提供了至關重要的測試和維護工具。從工業電子產品的安裝維護服務到計算機網絡的故障解決維護管 理,還有精密計量和質量控制,福祿克電子測試工具在全球范圍內幫助用戶的業務正常運作。
深圳鼎陽 SIGLENT
SIGLENT 是全球*大的數字示波器ODM制造商,是目前國內出貨量*大的示波器生產廠家,公司為*高新技術企業和深圳市高新技術企業,通過了 ISO9001:2008國際質量管理體系認證、ISO14001:2004環境管理體系認證,是中國電子儀器行業協會會員,廣東省儀器代表協會理事單 位。
北京普源RIGOL
RIGOL是業界*從事測量儀器研發、生產和銷售的高新技術企業;是中國電子儀器行業協會、中國儀器儀表學會會員。
公司擁有國際水準的技術,擁有數量眾多的專利和計算機操作系統軟件著作權,自主知識產權填補了*空白。
公司堅持自主創新,現已研發并生產了十五大系列、數十種產品,具體包括數字示波器、函數/任意波形發生器、數字萬用表、虛擬儀器、可編程線性電源和多種數字化測試儀器。產品廣泛適用于生產制造、工業控制、廣播電視、網絡通信、療監測和科研教學等領域。
OWON
OWON致力為消費者提供合宜適用的測量解決方案,將高端測量技術普及應用至您的工作與生活中,“MEET YOUR BEST NEEDS”正是為此孕育而生。
自成功研發出國內首臺手持彩色液晶數字存儲式示波器后,我們在精密儀器儀表領域內快速成長,時至今日,OWON已可提供數字示波器系列數十個系列的產品。無論是技術人員、工程師還是科研、教學人員,他們都可通過OWON產品擴展個人能力并出色完成工作。
深圳麥科信Micsig
Micsig致力于研發手持示波器,旨提升民族品牌,填補了國內中高端手持機空白。
其他相關
注意事項
為了使波形的讀數更加*、清晰,在原始校正波形時,一定要把波形調得*準、*清晰、線條調至*精細,只有這樣,讀數才會*為準確,誤差才會減至*少,這對 故障分析往往有舉足輕重的作用。*后還有一點需要注意的是:校正波形調整完畢后,所有補償按鈕都不能調動或更改(即SWP VAP和電壓補償),否則將要再次對示波器重新校正一次
儀器操作人員的安全和儀器安全,儀器在安全范圍內正常工作,保證測量波形準確、數據可靠,應注意: 1.通用示波器通過調節亮度和聚焦旋鈕使光點直徑*小以使波形清晰,減小測試誤差;不要使光點停留在一點不動,否則電子束轟擊一點宜在熒光屏上形成暗斑,損壞熒光屏。
2.測量系統- 例如示波器、信號源;打印機、計算機等設備等。被測電子設備- 例如儀器、電子部件、電路板、被測設備供電電源等設備接地線必須與公共地(大地)相連。
3. TDS200/TDS1000/TDS2000 系列數字示波器配合探頭使用時,只能測量(被測信號- 信號地*是大地,信號端輸出幅度小于300V CAT II)信號的波形。*不能測量市電AC220V 或與市電AC220V 不能隔離的電子設備的浮地信號。(浮地是不能接大地的,否則造成儀器損壞,如測試電磁爐。)
4.通用示波器的外殼,信號輸入端BNC 插座金屬外圈,探頭接地線,AC220V 電源插座接地線端都是相通的。如儀器使用時不接大地線,直接用探頭對浮地信號測量,則儀器相對大地會產生電位差;電壓值等于探頭接地線接觸被測設備點與大地之間的電位差。這將對儀器操作人員、示波器、被測電子設備帶來嚴重安全危險。
5. 用戶如須要測量開關電源(開關電源初級,控制電路) 、UPS(不間斷電源)、電子整流器、節能燈、變頻器等類型產品或其它與市電AC220V 不能隔離的電子設備進行浮地信號測試時,必使用DP100高壓隔離差分探頭。
示波器使用中的其他注意事項
(1)熱電子儀器一般要避免頻繁開機、關機,示波器也是這樣。
(2)如果發現波形受外界干擾,可將示波器外殼接地.
(3)“Y輸入”的電壓不可太高,以免損壞儀器,在*大衰減時也不能超過400 V.“Y輸入”導線懸空時,受外界電磁干擾出現干擾波形,應避免出現這種現象。
(4)關機前先將輝度調節旋鈕沿逆時針方向轉到底,使亮度減到*小,然后再斷開電源開關.(5)在觀察熒屏上的亮斑并進行調節時,亮斑的亮度要適中,不能過亮。
示波器分為萬用示波表,數字示波器,模擬示波器,虛擬示波器,任意波形示波器, 信號發生器,函數發生器。
示波器內容的拓展
于單片機的等效采樣示波器設計
愛儀器儀表網是北京熙縝隆博環保科技有限公司旗下網站,主要經銷進口儀器儀表,價格實惠,歡迎新老客戶前來光顧!