<video id="hq1ro"></video>
<tt id="hq1ro"></tt>
<rp id="hq1ro"><nav id="hq1ro"></nav></rp>
<rp id="hq1ro"></rp>
    <rt id="hq1ro"><optgroup id="hq1ro"></optgroup></rt>
    <font id="hq1ro"><form id="hq1ro"></form></font>
    買儀器,比價格,我們都在ai1718.com!
    聯系電話

    大氣顆粒物檢測方法及其發展(下)

    來源:愛儀器儀表網  發布時間:15-06-02 16:43  作者:ai1718  瀏覽次數:835  分類:技術文章

    3.3、壓電晶體法

    壓電晶體法(又稱壓電晶體頻差法),采用石英諧振器為測量敏感元件,其工作原理是使空氣以恒定流量通過切割器,進入由高壓放電針和微量石英諧振器組成的靜電采樣器,在高壓電暈放電的作用下,氣流中的顆粒物全部沉降于測量諧振器的電極表面上,因電極上增加了顆粒物的質量,其振蕩頻率發生變化,根據頻率變化可測定可吸人顆粒物的質量濃度,石英諧振器相當于一個超微量天平。

    壓電晶體法儀器可以實現實時在線檢測。石英諧振器對其表面質量的變化十分敏感,使用一段時間后需要清潔。利用此原理的大氣監測儀一般裝備于環境監測自動站。

    3.4、 β射線吸收法

    β射線吸收式測量儀的工作原理是: 射線在通過顆粒物時會被吸收,當能量恒定時,β射線的吸收量與顆粒物的質量成正比。測量時,經過切割器,將顆粒物捕集在濾膜上,通過測量β射線的透過強度,即可計算出空氣中顆粒物濃度。儀器可以間斷測量,也可以進行自動連續測量,粉塵對β線的吸收與氣溶膠的種類、粒徑、形狀、顏色和化學組成等無關,只與粒子的質量有關。β射線是由14C射線源產生的低能射線,安全耐用,其半衰期可達數千年,十分穩定。

    3.5、微量振蕩天平法

    微量振蕩天平法(TEOM法,英文名稱Tapere Element Oscillating Microbalance),是近年發展起來的顆粒物濃度測量方法,測量原理是基于專利技術的錐形元件振蕩微量天平原理,由美國R&P公司研制,符合美國EPA標準。此錐形元件于其自然頻率下振蕩,振蕩頻率由振蕩器件的物理特性、參加振蕩的濾膜質量和沉積在濾膜上的顆粒物質量決定。儀器通過采樣泵和質量流量計,使環境空氣以一恒定的流量通過采樣濾膜,顆粒物則沉積在濾膜上。測量出一定間隔時間前后的兩個振蕩頻率,*能計算出在這一段時間里收集在濾膜上顆粒物的質量,再除以流過濾膜的空氣的總體積,得到這段時間內空氣中顆粒物的平均濃度。

    在大氣自動監測系統中,美國R&P公司的RP1400a測塵儀用于實時連續監測空氣中顆粒物的濃度,其測量精度和實時性是傳統方法所無法比擬的。配以不同的切割器,RP1400a可用于測量PM2.5、PM10和TSP。儀器每2秒測量一次濾膜的振蕩頻率,同時儀器也可輸出0.5、1、8、24h的平均濃度。但該儀器在測量時受溫度、濕度影響較大,應特別注意。

    3.6、電荷法

    電荷法主要用在煙氣中顆粒物(粉塵)的監測當煙道或煙囪內粉塵經過應用耦合技術的探頭時,探頭所接收到的電荷來自粉塵顆粒對探頭的撞擊、摩擦和靜電感應。由于安裝在煙道上探頭的表面積與煙道的截面積相比非常小,大部分接收到的電荷是由于粒子流經過探頭附近所引起的靜電感應而形成。排放濃度越高,感應、摩擦和撞擊所產生的靜電荷*越強。即O/tocM/t(這里,Q代表電荷,M代表顆粒物量,t代表時間)。

    電荷法技術包括直流耦合與交流耦合技術兩種。

    電荷法屬于浮游測定法,可以實現現場在線監測。目前國內應用比較普遍的煙塵在線監測系統主要有:采用交流耦合技術的澳大利亞GOYEN(高原)公司的EMS6型,采用直流耦合技術的英國CODEL公司的MonoGard型。由于不同的顆粒材料會產生不同的感應、摩擦電流,此類設備必需在安裝后進行須標定。

    3.7、常用顆粒物檢測方法比較

    上述顆粒物質量或相對質量濃度的各種測量方法,根據的是顆粒物的不同性質與質量的直接或間接的關系,在某一方面有一定的長處,同時會帶來某方面的缺點(見表1),在選擇測定方法時一定要注意揚長避短。顆粒物濾膜稱重法一般需要較長的采樣時間,很難適用于要求快速得到測量結果的場合,不能測定粒子的時空分布,測量結果是一段時間內的平均值,操作也較復雜。相比較而言,其他濃度測量方法雖然存在一定誤差,但在顆粒物自動在線連續檢測方面是濾膜稱重法所無可比擬的,應根據不同的測定目的來選擇。在需要實時在線測定的場合要用到相對質量濃度測量方法,而在不需要在線連續測量或需要考慮可比性的情況下,要用濾膜稱重法直接測量顆粒物的質量濃度,同時,濾膜稱重法采集的顆粒物樣品可以用來進行其它分析。

    4、大氣顆粒物濃度測試技術的發展趨勢

    隨著自動化及信息技術的迅速發展,環境監測也由以人工采樣和實驗室分析為主,向自動化、智能化和網絡化為主的監測方向發展;由較窄領域監測向全方位領域監測的方向發展。監測儀器逐步向高質量、多功能、集成化、自動化、系統化和智能化的方面發展。社會需要大量的*、使用方便、操作簡單的大氣顆粒物監測儀器、監控設備,應重點發展用于在線監測污染源煙塵、工業粉塵排放量(濃度或總量),包括測量相關參數:流量、含濕量、溫度等,實現污染源排放濃度或總量監測以及監測和監控一體化的監測儀器,特別是適用于細微顆粒物(PM10、PM2.5)的采樣和監測儀器。

    要適應這個發展,必須加強環境監測儀器和監測技術現代化的基礎研究,研究顆粒物濃度對大氣各種性質的影響,反過來根據這些影響探索物理、化學、生物、電子、光學等新技術在環境監測儀器和監測技術中的應用,研究新的顆粒物濃度檢測方法。同時,促進監測儀器科研與生產結合,加快環境監測技術的創新和成果轉化,逐步提高國內監測儀器的研發水平。

    產品推薦
    正品保證 正品保證
    七天包退 七天包退
    好評如潮 好評如潮
    閃電發貨 閃電發貨
    權威榮譽 權威榮譽
    99久久人妻精品免费二区